Search results for "Wharton’s jelly mesenchymal stromal cell"

showing 2 items of 2 documents

Wharton’s Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro

2019

Therapeutic options for end-stage organ failure are often limited to whole organ transplantation. The tolerance or rejection of the transplanted organ is driven by both early non-specific innate and specific adaptive responses. The use of mesenchymal stromal cells (MSCs) is considered a promising tool in regenerative medicine. Human umbilical cord (HUC) is an easily available source of MSCs, without relevant ethical issues. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs), showed consistent immunomodulatory features that may be useful to promote immune tolerance in the host after transplantation. Few data are available on the phenotype of WJ-MSCs in situ. We investigated the expression of i…

0301 basic medicineSettore BIO/17 - IstologiaB7 AntigensT cellIn Vitro TechniquesBiologyLymphocyte ActivationRegenerative medicineCell therapyUmbilical CordImmune toleranceImmunomodulation03 medical and health sciences0302 clinical medicineWharton's jellymedicineHumansWharton JellyCD276Cells CulturedCell ProliferationStem cellMesenchymal stem cellCell DifferentiationMesenchymal Stem CellsHuman umbilical cordCell biologyTransplantationTolerance induction030104 developmental biologymedicine.anatomical_structureB7-H3030220 oncology & carcinogenesisLymphocyte inhibitionRegenerative medicineCytokinesWharton’s jelly mesenchymal stromal cellsStem cell
researchProduct

Wharton’s Jelly Mesenchymal Stromal Cells Support the Expansion of Cord Blood–derived CD34+Cells Mimicking a Hematopoietic Niche in a Direct Cell–cel…

2018

Wharton’s jelly mesenchymal stromal cells (WJ-MSCs) have been recently exploited as a feeder layer in coculture systems to expand umbilical cord blood–hematopoietic stem/progenitor cells (UCB-HSPCs). Here, we investigated the role of WJ-MSCs in supporting ex vivo UCB-HSPC expansion either when cultured in direct contact (DC) with WJ-MSCs or separated by a transwell system or in the presence of WJ-MSC–conditioned medium. We found, in short-term culture, a greater degree of expansion of UCB-CD34+cells in a DC system (15.7 ± 4.1-fold increase) with respect to the other conditions. Moreover, in DC, we evidenced two different CD34+cell populations (one floating and one adherent to WJ-MSCs) with …

Settore BIO/17 - Istologia0301 basic medicineStromal cellextracellular matrixCell Culture TechniquesBiomedical EngineeringCD34lcsh:MedicineAntigens CD34Brief Communication03 medical and health sciencesWharton's jellyHumansWharton JellyProgenitor cellCoculture TechniqueColony-forming unitTransplantationChemistrylcsh:RMesenchymal stem cellMesenchymal Stem CellsCell DifferentiationHematopoietic Stem CellCell BiologyHematopoietic Stem CellsFetal BloodADP-ribosyl Cyclase 1Coculture TechniquesCell biologysecretomeMesenchymal Stem Cell030104 developmental biologyhematopoietic nicheCord bloodhematopoietic stem and progenitor cell expansionWharton’s jelly mesenchymal stromal cellWharton’s jelly mesenchymal stromal cellsCell Culture TechniqueHumanHoming (hematopoietic)Cell Transplantation
researchProduct